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A B S T R A C T

Document image enhancement and binarization are commonly performed before document analysis
and recognition tasks to improve the e�ciency and accuracy of techniques such as optical character
recognition (OCR). This is because directly recognizing text in degraded documents, particularly
in color images, often obtains unsatisfactory results. Training independent generative adversarial
networks (GANs) for each color channel can generate images where shadows and noise are e�ectively
removed, which in turn facilitates e�cient text information extraction. However, employing multiple
GANs for di�erent color channels requires long training and inference times. To reduce both training
and inference times of models for document image enhancement and binarization, we propose
MFE-GAN, an e�cient GAN-based framework with multi-scale feature extraction (MFE), which
incorporates Haar wavelet transformation (HWT) and normalization to process document images
before feeding them into GANs for training. In addition, we present novel generators, discriminators,
and loss functions to improve the model’s performance, and conduct ablation studies to demonstrate
their e�ectiveness. Experimental results on the Benchmark, Nabuco, and CMATERdb datasets show
that the proposed MFE-GAN significantly reduces both the total training and inference times while
maintaining comparable performance in comparison to state-of-the-art methods. The implementation
of this work is available at https://ruiyangju.github.io/MFE-GAN.

1. Introduction
Document image enhancement and binarization play im-

portant roles in document analysis, significantly impacting
subsequent stages of the recognition process and layout anal-
ysis [1]. For instance, color-degraded documents often su�er
from various types of degradation, such as paper yellowing,
text fading, and page bleeding [2, 3]. These degradations can
seriously a�ect the accuracy of techniques such as optical
character recognition (OCR) [4, 5] and document image
understanding [6, 7].

However, for color-degraded documents, traditional im-
age processing methods [8, 9, 10] perform poorly in elimi-
nating shadows and noise, sometimes even losing text infor-
mation. Therefore, researchers have turned to deep learning-
based methods, and many have achieved satisfactory results.
For instance, Souibgui et al. [11] introduced a novel encoder-
decoder architecture based on Vision Transformer (ViT),
which achieved good performance on the H-DIBCO 2018
dataset [12]. Yang et al. [13] proposed an end-to-end gated
convolutions-based network (GDB) to address the chal-
lenge of inaccurate stroke edge extraction in documents,
and achieved state-of-the-art (SOTA) performance on the
H-DIBCO 2014 and DIBCO 2017 datasets [14, 15]. For
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training and evaluation, these methods employ the “leave-
one-out” strategy to construct the training set (viz., for the
selected test set, all the remaining datasets are used to train
the model). Considering the computing resources for model
training, we believe that the strategy [16, 17, 18, 19, 20] of
using fixed training and test sets as the Benchmark dataset is
more e�cient compared to the “leave-one-out” strategy.

Although the existing SOTA GAN-based methods [18,
20] achieve excellent performance on the Benchmark dataset,
their total training and inference times are too long due to the
use of six generative adversarial networks (GANs) [21]. As
shown in Figure 1, these computational times are signifi-
cantly high. To address this issue, we propose MFE-GAN,
an e�cient GAN-based framework that incorporates a novel
multi-scale feature extraction (MFE) module, along with the
generator, discriminator, and loss functions. Furthermore,
we extend our previous conference version [22] by evaluat-
ing MFE-GAN on additional datasets.

The main contributions of this work are summarized as
follows:

(a) Including both training and inference times as evaluation
metrics, which are overlooked by previous methods.

(b) Discovering cases where PSNR does not always accu-
rately reflect model performance, and introducing a new
average score metric (ASM) for more comprehensive
evaluation.

(c) Employing Haar wavelet transformation (HWT) with
normalization for multi-scale feature extraction (MFE),
e�ectively reducing training and inference time.
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Method Generator ASM~ Total Training Timeö Total Inference Timeö

Suh et al. [18] U-Net & EfficientNet-B5 73.33 304.12h 0.82h
Ju et al. [20] U-Net++ & EfficientNet-B5 73.57 76.29h 1.04h
MFE-GAN (Ours) U-Net & EfficientNetV2-S 73.23 63.91h 0.68h
MFE-GAN (Ours) U-Net++ & EfficientNetV2-S 73.79 68.43h 0.77h

Figure 1: Graphs (top) and table (bottom) compare the average-score metric (ASM) with respect to total training and inference
times, measured on the Benchmark dataset using NVIDIA GeForce RTX 4090 GPUs. MFE-GAN, using U-Net & EfficientNetV2-S
as the generator, trains 16%–79% faster than the compared methods, while inference time is reduced by 17%–35%.

(d) Outperforming SOTA GAN-based methods on three
datasets in terms of model performance, training, and in-
ference times through the incorporation of a novel MFE
module, generator, discriminator, and loss functions.

The rest of this paper is organized as follows: Section 2
introduces the application of image generation networks
in document image binarization, and reviews SOTA meth-
ods for color document image enhancement and binariza-
tion. Section 3 describes the proposed method, including
the network architecture, multi-scale feature extraction, and
loss functions. Section 4 analyzes the performance of the
proposed method, quantitatively compares it with SOTA
GAN-based methods on three datasets, and presents ablation
studies to demonstrate the e�ectiveness of each component.
Section 5 discusses the limitations of our method based on
the analysis of visual results. Finally, Section 6 concludes the
paper and highlights potential directions for future research.

2. Related Work
Document image binarization has advanced with the

introduction of fully convolutional networks (FCNs) [23].
Tensmeyer et al. [24] formulated binarization as a pixel clas-
sification learning task and utilized FCNs for this purpose.
Inspired by U-Net [25], Peng et al. [26] proposed a con-
volutional encoder–decoder model to perform binarization.
He et al. [17] proposed DeepOtsu, which initially employed
convolutional neural networks (CNNs) for document image
enhancement and subsequently applied Otsu’s method [8]

for document image binarization. In addition, Zaragoza et

al. [27] employed a selective autoencoder method to parse
document images and subsequently binarize them using
global thresholding.

The introduction of GANs [21] has enabled the gen-
eration of binarized document images. Zhao et al. [28]
formulated binarization as an image-to-image translation
task, employing conditional generative adversarial networks
(cGANs) to address the challenge of combining multiscale
information in binarization. Souibgui et al. [29] introduced
an e�ective end-to-end framework based on cGANs (named
the document enhancement generative adversarial network,
DE-GAN) to restore degraded document images, achieving
outstanding results on the DIBCO 2013, DIBCO 2017, and
H-DIBCO 2018 datasets [30, 15, 12]. Deng et al. [31]
proposed a method employing a dual discriminator gener-
ative adversarial network (DD-GAN) using focal loss as the
generator loss function.

Recently, two SOTA methods employing multiple GANs
for each color channel have been developed for document
image enhancement and binarization tasks. Specifically,
Suh et al. [18] proposed a two-stage GAN method using
six improved CycleGANs [32] for color document image
binarization. In Suh et al.’s method, the generator consists
of U-Net [25] with E�cientNet [33], while the discriminator
employs Pix2Pix GAN [34]. Ju et al. [20] introduced a
three-stage GAN method based on the two-stage network
architecture, employing six improved CycleGANs [32] with
an enhanced generator using U-Net++ [35]. Although these
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Figure 2: The overall architecture of three-stage GAN-based framework, named MFE-GAN. Stage 1: Document image processing;
Stage 2: Document image enhancement; and Stage 3: Document image binarization.

methods consistently outperform other SOTA models on
the DIBCO datasets, they su�er from unsatisfactory total
training and inference times due to the use of multiple GANs.

3. Proposed Method
3.1. Network Architecture

We propose MFE-GAN, a novel three-stage GAN-based
framework to perform document image processing, en-
hancement, and binarization, as shown in Figure 2.

In Stage 1, the original color document image is divided
into several 256 ù 256 pixel patches. Each patch is then split
into four single-channel images (i.e., red, green, blue, and
gray), because training on separate color channels tends to
generate better results. For the MFE module, we apply HWT
to each single-channel patch and extract the 128 ù 128 pixel
LL (low-low) sub-band. This sub-band is then normalized
and serves as the input for Stage 2.

In Stage 2, MFE-GAN employs four independent gen-
erators using an encoder–decoder architecture based on U-
Net++ [35] and an E�cientNetV2-S [36] backbone. Each
128 ù 128 single-channel sub-band obtained from Stage 1
is fed into its corresponding generator, which outputs a 128
ù 128 enhanced sub-image. As shown in Figure 2, the four
enhanced sub-images are first combined using a pixel-wise
summation and then concatenated to form the final output of
Stage 2.

To standardize the generated outputs, a shared discrim-
inator is employed for all independent generators. Specifi-
cally, we use the improved PatchGAN [32] as the discrim-
inator, applying instance normalization to all layers except
the first, because including instance normalization in the first
layer would normalize the color information, which is not
intended.

In Stage 3, multi-scale GANs are utilized for both local
and global binarization to enhance the distinction between

text and background. The output of Stage 2 is an image of
the same size as the original input image and is fed into an
independent generator that produces the local binarization
output (Blocal).

In addition, the original input image is scaled to 512 ù
512 pixels using nearest-neighbor interpolation [37] and fed
into another independent generator to produce the global
binarization output (Bglobal). Each of these two branches
(local and global) employs its own discriminator, forming
two complete GANs. The final output (Bfinal) is obtained
by an AND operation of the local and global binarization
results (Bfinal = Blocal ‰ Bglobal).

3.2. Multi-scale Feature Extraction
To reduce both total training and inference times, MFE-

GAN employs its multi-scale feature extraction (MFE) mod-
ule on 256 ù 256 pixel patches in Stage 1. It is well known
that reducing the input image size can significantly reduce
the model training time, and decreasing the size of patches
from 256 ù 256 pixels to 128 ù 128 pixels is consistent
with this. However, directly reducing the image size using
simple interpolation would negatively impact the model’s
performance. Instead of using interpolation for image size
reduction, MFE-GAN employs Haar wavelet transforma-
tion (HWT) and normalization, which e�ectively preserve
contour information and reduce noise interference while
decreasing the image size. This approach is superior to
interpolation methods that produce each output pixel based
on its nearby pixels. We present the related experiments in
Section 4.5.1, which demonstrate that the global binarization
results of the images processed by HWT and normalization
are closer to the ground-truth images than those processed
by other interpolation methods.

During Stage 1 document image processing, HWT de-
composes the input images into four sub-bands (LL, LH, HL,
and HH). The low-frequency component (LL) encodes the
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contour information, and the high-frequency components
(LH, HL, and HH) capture details and localized information.
Therefore, we retain and normalize the low-low (LL) sub-
band from HWT, e�ectively filtering out noise (which is
often high-frequency) from color document images.

3.3. Loss Function
The convergence of the loss function is often unstable

during the GANs training process [21]. To stabilize the
loss function convergence in MFE-GAN, we we apply the
objective function of the Wasserstein Generative Adversarial
Network with Gradient Penalty (WGAN-GP) [38]. Since the
goal of document image binarization is to classify each pixel
into two categories (namely, text and background), we use
binary cross-entropy (BCE) loss instead of the L1 loss used
in the original method [34]. Experiments by Bartusiak et

al. [39] also demonstrated that BCE loss outperforms L1
loss in binary classification tasks.

While BCE loss focuses on the accuracy of each indi-
vidual pixel, Dice loss [40] emphasizes the accuracy of the
entire region. Galdran et al. [41] demonstrated that com-
bining BCE and Dice loss functions enhances segmentation
performance at both the pixel-wise and region-wise levels.
Since better segmentation performance at the regional level
contributes to the greater completeness of the generated text,
we use an improved WGAN-GP objective loss function,
which includes both BCE loss LBCE and Soft Dice loss
LSoft-DICE [42], expressed as follows:

LG(x, y; ✓G) = * Ex[D(G(x), x)] + �1 LBCE(G(x), y)
+ �2 LSoft-DICE(G(x), y),

(1)

LD = * Ex,y[D(y, x)] + Ex[D(G(x), x)]
+ ↵Ex, ÇyÌP Çy

[(= ( ÇyD( Çy, x) =2 *1)2],
(2)

where x is the input image, G(x) is the generated image, and
y is the ground-truth image. �1 and �2 control the relative
importance of di�erent loss terms, while ↵ denotes the
gradient penalty coe�cient. The discriminator D is trained
for minimizing LD to distinguish between ground-truth and
generated images, while the generator G aims to minimize
LG. The equations for BCE loss LBCE and Soft Dice loss
LSoft-DICE are shown as follows:

LBCE(Çy, y) = EÇy,y[y log Çy + (1 * y) log(1 * Çy)], (3)

LSoft-DICE(Çy, y) = 1 * 2Çy „ y
Çy + y = 1 * 2ÍÇy, yÎ

ÍÇy, ÇyÎ + Íy, yÎ , (4)

where y is the ground-truth, and Çy is the predicted image.

4. Experiments
4.1. Datasets
4.1.1. Benchmark Dataset

DIBCO (Document Image Binarisation Contest) pro-
vides ten competition datasets, including DIBCO 2009 [43],

H-DIBCO 2010 [44], DIBCO 2011 [45], H-DIBCO 2012
[46], DIBCO 2013 [30], H-DIBCO 2014 [14], H-DIBCO
2016 [47], DIBCO 2017 [15], H-DIBCO 2018 [12], and
DIBCO 2019 [48]. These datasets include both machine-
printed and handwritten images in grayscale and color, to-
taling 136 images.

BD (Bickley Diary) [49] was generously donated to the
Singapore Methodist Archives by Mr. Erin Bickley. This
dataset contains seven diary images, where factors such as
lighting variations and fold damage make text recognition
particularly challenging.

PHIBD (Persian Heritage Image Binarization Dataset)
[50] comprises 15 historical manuscript images sourced
from Mr. Mirza Mohammad Kazemaini’s old manuscript
collection in Yazd, Iran. The manuscripts within the images
are a�ected by various degrees of degradation, including
bleed-through, fading, and blurring.

SMADI (Synchromedia Multispectral Ancient Docu-
ment Images) [51] was captured using a CROMA CX MSI
camera, producing eight images for each document, resulting
in a total of 240 images of authentic documents. The ancient
documents in these images were written in iron-bile ink and
date from the 17th to 20th centuries.

To ensure a fair comparison between the proposed MFE-
GAN and the SOTA GAN-based methods [18, 20], we
adopt the same strategy as in [18, 20] to construct the
training set, as detailed in Table 1. The training set comprises
images from DIBCO 2009 (10 images); H-DIBCO 2010
(10 images); H-DIBCO 2012 (14 images); Bickley Diary
(7 images); PHIBD (15 images); and SMADI (87 images).
The testing set consists of images from DIBCO 2011 (16
images); DIBCO 2013 (16 images); H-DIBCO 2014 (10
images); H-DIBCO 2016 (10 images); DIBCO 2017 (20
images); H-DIBCO 2018 (10 images); and DIBCO 2019 (20
images). Examples from the Benchmark dataset are shown
in Figure 3.

4.1.2. Nabuco Dataset
Nabuco [52] images were digitally compiled by Rafael

Dueire Lins and historians from the Joaquim Nabuco Foun-
dation between 1992 and 1994, using a true-color table
scanner with a resolution of 200 dpi. The Nabuco bequest,
consisting of 6,500 letters and postcards, both handwritten
and typed, comprises approximately 30,000 pages. This be-
quest holds significant value for those studying the history of
the Americas, as Joaquim Nabuco was one of the key figures
in the abolition of slavery and the first Brazilian ambassador
to the United States.

Due to the lack of corresponding ground-truth for most
Nabuco images, we use only 35 images with available
ground-truth, provided by the DIB team at CIn-UFPE,
Brazil. Examples from these images are presented in Fig-
ure 3. This team o�ers two datasets, containing 15 and 20
color Nabuco images with their respective ground-truth. For
evaluation, we perform a two-fold cross-validation proce-
dure on the Nabuco dataset. The specific implementation
details are shown in Table 1.
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Table 1
Detailed usage statistics for the three datasets used in this work.

Dataset Strategy Training Set (Pages) Test Set (Pages)

Original Processed (2562) Processed (5122) Original Processed (5122)
Benchmark1 Following [18, 20] 143 120,174 804 102 582

Nabuco Two-Fold
Cross-Validation

15 32,038 90 20 120
20 48,400 120 15 90

CMATERdb Five-Fold
Cross-Validation

4 5,308 24 1 6
4 5,242 24 1 6
4 4,942 24 1 6
4 4,592 24 1 6
4 2,140 24 1 6

1 “Benchmark” refers to training sets containing DIBCO 2009, H-DIBCO 2010, H-DIBCO 2012, BD, PHIBD, and SMADI; and test
sets containing DIBCO 2011, DIBCO 2013, H-DIBCO 2014, H-DIBCO 2016, DIBCO 2017, H-DIBCO 2018, and DIBCO 2019.

Figure 3: Examples from the three datasets used in this work: (a) Benchmark, (b) Nabuco, and (c) CMATERdb. Original images
are shown on the left, and their corresponding binarized ground-truth on the right.

Table 2
Comparison of baseline and proposed model configurations.

Baseline [18]
Generator U-Net & EfficientNet-B5

Generator Loss *D(G(z)) + �LBCE
Discriminator Similar Pix2pixGAN

Discriminator Loss D(x) *D(G(z)) + 10 � GP
MFE Module 7

MFE-GAN
Generator U-Net++ & EfficientNetV2-S

Generator Loss *D(G(z)) + �1LBCE + �2LSoft-DICE
Discriminator Improved PatchGAN

Discriminator Loss D(x) *D(G(z)) + 10 � GP
MFE Module 3

MFE: Multi-scale Feature Extraction; GP: Gradient Penalty;
� = 50, and �1 = �2 = 25.

4.1.3. CMATERdb Dataset
CMATERdb [53] is a dataset of Bengali and English

manuscripts created by the Center for Microprocessor Ap-
plications for Training Education and Research (CMATER)
at Jadavpur University, India. It comprises 5 images of color
documents, including both camera-captured and scanned
materials. These 5 images include a diverse range of docu-
ment types, such as historical manuscripts and contemporary

records, as well as degraded and well-preserved documents.
Examples from this dataset are shown in Figure 3.

Since this dataset consists of only 5 images, each repre-
senting di�erent conditions (i.e., blurred vs. clear, degraded
vs. well-preserved), we perform a five-fold cross-validation
procedure on the CMATERdb dataset. Specifically, we se-
lect four images for training and one for testing, the details
are provided in Table 1.

4.2. Evaluation Metrics
For quantitative comparison, four classical metrics are

employed, namely: f-measure (FM), pseudo-f-measure (p-
FM), peak signal-to-noise ratio (PSNR), and distance recip-
rocal distortion (DRD). When comparing the performance
of di�erent methods, there are cases where the proposed
MFE-GAN achieves SOTA-level FM and p-FM values, but
its PSNR is lower than that of other methods. Inspired
by Jemni et al. [54], we introduce the average-score metric
(ASM) to evaluate the overall performance of each method
more comprehensively:

ASM = FM + p-FM + PSNR + (100 *DRD)
4 . (5)

Note that in ASM, segmentation-quality metrics (FM, p-
FM) are balanced against pixel-wise metrics (PSNR, DRD).
We consider this reasonable, as it prevents a single metric,
such as a low PSNR, from disproportionately penalizing
an otherwise e�ective model. This is because, for methods
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Table 3
PSNR (dB) of images resized using different methods: Interpolation/HWT/HWT&Normalization (Ours), for various datasets.

Method DIBCO 2009 H-DIBCO 2010 H-DIBCO 2012 Bickley Diary PHIBD SMADI Mean Values

Bicubic 71.45dB 72.22dB 71.67dB 64.29dB 69.58dB 69.88dB 69.85dB
Bilinear 70.94dB 72.16dB 71.46dB 64.07dB 69.71dB 69.86dB 69.70dB
Area 70.94dB 72.16dB 71.46dB 64.07dB 69.71dB 69.86dB 69.70dB
Nearest 70.95dB 72.04dB 71.59dB 64.20dB 69.69dB 69.83dB 69.72dB
Lanczos 71.42dB 72.22dB 71.69dB 64.30dB 69.58dB 69.89dB 69.85dB
HWT 62.65dB 67.11dB 59.67dB 53.76dB 58.00dB 59.48dB 60.11dB
Ours 71.77dB 72.74dB 72.85dB 64.44dB 70.76dB 69.44dB 70.34dB
Our method uses HWT&Normalization. The highest and second-highest PSNR values are highlighted in red and blue, respectively.

utilizing GANs to generate binarized images, the focus
should be on the overall quality of the generated binarized
image rather than on individual pixels. Furthermore, as
we illustrate in Section 4.6, our proposed MFE-GAN can
generate more complete images, although its PSNR is lower
than that of the compared methods.

In addition, to demonstrate the e�ciency of the proposed
MFE-GAN relative to others when using the same computa-
tional resources, we calculate the total training and inference
times for all models in hours (h). The total training time
includes: the training time of models in Stage 2, the time
required for Stage 2 models to generate all output images
(Stage 2 Predict), the training time for the model using
Stage 2’s output images in Stage 3 (Stage 3 Top), and the
training time for the model using resized original images
(512ù 512) in Stage 3 (Stage 3 Bottom). The total inference
time is defined as the time required to generate all images of
the test set.

4.3. Baseline
We select the method [18], which has a similar network

architecture, as the baseline. As shown in Table 2, the
baseline method di�ers from MFE-GAN in terms of the
generator and discriminator, their respective loss functions,
and the multi-scale feature extraction (MFE) module.

4.4. Implementation Details
4.4.1. Data Preparation

To ensure a fair comparison, we employ the same dataset
and data augmentation strategies for both MFE-GAN and
the SOTA GAN-based methods [18, 20]. In Stage 1, the
original input images are split into 256 ù 256 pixel patches
to match the input size of the ImageNet [55] dataset, as
we utilize a pre-trained model based on this dataset. Data
augmentation is applied to expand the training samples, with
scaling factors of 0.75, 1, 1.25, and 1.5, as well as a rotation
of 270°. For the Benchmark Dataset, this results in a total of
120,174 training image patches.

For global binarization in Stage 3, the input images are
resized to 512 ù 512 pixels. This set is further augmented
through horizontal and vertical flipping, as well as rotations
of 90°, 180°, and 270°, resulting in 804 training images of
size 512 ù 512 pixels for the Benchmark Dataset.

The Nabuco and CMATERdb datasets employ the same
data augmentation strategies for their respective stages. The
final number of processed training image patches and resized
512 ù 512 pixel training images for these datasets are sum-
marized in Table 1.

4.4.2. Pre-training and Training
All methods employ pre-trained weights from the Im-

ageNet [55] dataset to improve training e�ciency, due to
constraints on data availability. Specifically, Suh et al. [18]
and Ju et al. [20] use E�cientNet [33] as the encoder of their
GANs, while MFE-GAN adopts E�cientNetV2 [36].

4.4.3. Training
To ensure a fair comparison of training and inference

times, all models are trained on NVIDIA RTX 4090 GPUs
using PyTorch as the implementation framework. The train-
ing parameters for Stage 2 and Stage 3 are largely similar,
with the main exception being the number of epochs: 10 for
Stage 2 and 150 for Stage 3. We choose the Adam optimizer
to train the models and set the initial learning rate to 2ù10*4.
In addition, the Adam optimizer parameters are set to �1 =
0.5 and �2 = 0.999 for training both the generators and the
discriminators.

4.5. Quantitative Comparisons
4.5.1. Multi-scale Feature Extraction

We explore other image-resizing techniques for multi-
scale feature extraction, including interpolation-based algo-
rithms such as bicubic, bilinear, area, nearest-neighbor, and
Lanczos. We implement these techniques using the open-
source computer vision library (OpenCV) to downscale all
input images and the corresponding ground-truth images
from 256 ù 256 to 128 ù 128. In addition, we employ the
“HWT” and “HWT and normalization”, i.e., our proposed
MFE module. It should be noted that the resized images
obtained from all these methods are non-binary.

To conduct a meaningful, apples-to-apples comparison
against the binary ground-truth images, we must first bi-
narize these intermediate outputs. Therefore, we apply a
standard global thresholding algorithm (Otsu’s method [8])
to these resized images, and then compute the PSNR val-
ues. We evaluate the impact of di�erent image resizing
techniques on six training sets by calculating the PSNR
values (against the corresponding ground-truth images) and
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Table 4
Training and inference time (hours) of the proposed and SOTA GAN-based methods on the Benchmark Dataset.

Method Stage2 Trainö Stage2 Predictö Stage3 Topö Stage3 Bottomö Trainingö Inferenceö

U-Net & EfficientNet-B4 [18] 14.73h 3.75h 65.96h 1.17h 85.61h 0.74h
U-Net & EfficientNet-B5 [18] 16.30h 3.77h 282.80h 1.26h 304.12h 0.82h
U-Net++ & EfficientNet-B4 [20] 18.81h 3.95h 45.63h 1.29h 69.68h 0.91h
U-Net++ & EfficientNet-B5 [20] 21.23h 4.37h 49.23h 1.46h 76.29h 1.04h
U-Net & EfficientNetV2-S 11.60h 3.45h 47.47h 1.39h 63.91h 0.68h
U-Net++ & EfficientNetV2-S 14.12h 3.63h 49.29h 1.39h 68.43h 0.77h
The proposed MFE-GAN is highlighted in bold. The best and second-best performances are colored in red and blue, respectively.

Table 5
Quantitative comparison (ASM: FM/p-FM/PSNR/DRD, Total Training Time, Total Inference Time) of the proposed MFE-GAN
and other methods for document image enhancement and binarization on the Benchmark Dataset.

Method FM~ p-FM~ PSNR~ DRDö ASM~ Trainingö Inferenceö

Otsu [8] 73.91 75.93 14.50dB 30.32 58.51 – –
Sauvola [10] 75.83 80.72 15.62dB 9.65 65.63 – –
U-Net & EfficientNet-B4 [18] 87.95 89.01 19.10dB 4.83 72.81 85.61h 0.74h
U-Net & EfficientNet-B5 [18] 88.56 89.90 19.31dB 4.46 73.33 304.12h 0.82h
U-Net++ & EfficientNet-B4 [20] 88.14 89.71 19.09dB 4.64 73.08 69.68h 0.91h
U-Net++ & EfficientNet-B5 [20] 89.13 90.35 19.30dB 4.49 73.57 76.29h 1.04h
U-Net & EfficientNetV2-S 88.83 89.87 19.07dB 4.86 73.23 63.91h 0.68h
U-Net++ & EfficientNetV2-S 89.69 90.78 19.15dB 4.45 73.79 68.43h 0.77h
The proposed MFE-GAN is highlighted in bold. The best and second-best performances are colored in red and blue, respectively.

computing the mean PSNR value for all images. The results
are recorded in Table 3.

We observe that the mean PSNR value achieved by the
“HWT” method is 60.11dB, indicating that images reduced
directly using HWT have low similarity with the corre-
sponding ground-truth images. In addition, the mean PSNR
values for resized images produced by di�erent interpolation
methods are all below 70dB. However, the mean PSNR value
for images processed by “HWT and normalization” reaches
70.34dB, which confirms that the images obtained by this
method are closer to the corresponding ground-truth images
at the pixel level. In conclusion, the results demonstrate
that our “HWT and normalization” method is more e�ective
than other interpolation-based image-resizing techniques for
document image enhancement and binarization.

4.5.2. Benchmark Dataset
We compare MFE-GAN with the SOTA GAN-based

methods [18, 20] for document image enhancement and
binarization. As shown in Table 4, the compared methods
using U-Net & E�cientNet-B5 or U-Net++ & E�cientNet-
B5 [33] are already slower than our proposed MFE-GAN.
Therefore, we do not further compare against methods using
E�cientNet-B6, as this would further contradict our goal of
reducing training and inference times.

Table 5 shows that MFE-GAN using U-Net++ [35] with
E�cientNetV2-S [36] achieves the highest ASM of 73.79.
It requires a total training time of 68.43h, which is also the
second-shortest time. This is faster than the U-Net++ &

E�cientNet-B5 method (76.29h), which yielded the second-
highest ASM. Furthermore, the total inference time of MFE-
GAN is 0.77h, notably lower than the 1.04h required by
Ju et al.’s method [20] (using U-Net++ & E�cientNet-B5),
representing a reduction of approximately 26%.

Moreover, MFE-GAN using U-Net & E�cientNetV2-
S obtains the shortest total training and inference times
(63.91h and 0.68h, respectively). Although the ASM value
achieved by MFE-GAN of 73.23 is not the highest, when
compared to Suh et al.’s method [18] (using U-Net with
E�cientNet-B5) that yields 73.33 ASM, the training time
is reduced from 304.12h to 63.91h, which is a remarkable
decrease of approximately 78%. Overall, the experimental
results demonstrate the e�ciency and competitive perfor-
mance of our proposed MFE-GAN.

Next, we compare the results achieved by all benchmark
methods for each evaluation metric. MFE-GAN achieves the
highest FM and p-FM values of 89.69 and 90.78, respec-
tively, while maintaining lower total training and inference
times than the method with the second highest FM and p-
FM values. For the DRD metric, MFE-GAN achieves the
second-highest value, but with a significantly reduced total
training time of 68.43h compared to the 304.12h taken by
the method with the highest DRD value. Although MFE-
GAN does not achieve the highest PSNR, this metric does
not directly reflect model performance in document image
enhancement and binarization, as we discuss in detail in
Section 4.6.
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Table 6
Quantitative comparison (ASM: FM/p-FM/PSNR/DRD, Total Training Time, Total Inference Time) of the proposed MFE-GAN
and SOTA GAN-based methods for document image enhancement and binarization on the Nabuco dataset.

Method Suh et al. [18] Suh et al. [18] Ju et al. [20] Ju et al. [20] MFE-GAN MFE-GAN
Generator U-Net & B4 U-Net & B5 U-Net++ & B4 U-Net++ & B5 U-Net & V2-S U-Net++ & V2-S

FM~ 85.93 87.45 85.95 87.63 87.56 88.04
p-FM~ 86.57 88.16 86.37 88.27 88.22 88.72
PSNR~ 18.17dB 18.61dB 18.17dB 18.65dB 18.51dB 18.60dB
DRDö 6.33 5.40 5.69 5.17 5.10 5.06

Stage2 Train Timeö 4.56h 5.71h 5.69h 6.62h 2.94h 3.02h
Stage2 Predict Timeö 2.04h 2.10h 2.22h 4.77h 2.19h 2.22h

Stage3 Top Timeö 20.36h 91.71h 22.20h 25.58h 18.30h 20.14h
Stage3 Bottom Timeö 0.51h 0.51h 0.52h 0.54h 0.55h 0.56h

ASM~ 71.08 72.21 71.20 72.34 72.30 72.58
Total Train Timeö 27.47h 100.03h 30.63h 37.51h 23.97h 25.93h

Total Inference Timeö 0.19h 0.22h 0.23h 0.26h 0.18h 0.21h
The best and second-best performances are highlighted in red and blue, respectively.

Table 7
Quantitative comparison (ASM: FM/p-FM/PSNR/DRD, Total Training Time, Total Inference Time) of the proposed MFE-GAN
and other methods for document image enhancement and binarization on the CMATERdb Dataset.

Method Suh et al. [18] Suh et al. [18] Ju et al. [20] Ju et al. [20] MFE-GAN MFE-GAN
Generator U-Net & B4 U-Net & B5 U-Net++ & B4 U-Net++ & B5 U-Net & V2-S U-Net++ & V2-S

FM~ 82.19 83.10 87.06 87.24 87.22 87.36
p-FM~ 88.17 89.44 91.49 92.31 91.66 92.46
PSNR~ 16.37dB 16.85dB 17.76dB 17.83dB 17.80dB 17.85dB
DRDö 6.36 5.59 4.34 4.24 4.29 4.19

Stage2 Train Timeö 1543.30s 1878.08s 2023.23s 2276.39s 540.16s 609.36s
Stage2 Predict Timeö 455.98s 559.37s 541.80s 553.17s 554.10s 556.45s

Stage3 Top Timeö 7974.51s 42333.73s 6810.23s 7392.94s 7213.80s 7533.96s
Stage3 Bottom Timeö 593.68s 554.37s 573.99s 579.52s 585.98s 599.41s

ASM~ 70.09 70.95 72.99 73.28 73.10 73.37
Total Train Timeö 10567.47s 45325.55s 9949.25s 10802.02s 8894.04s 9299.18s

Total Inference Timeö 3.49s 3.87s 4.07s 4.65s 3.06s 3.42s
The best and second-best performances are highlighted in red and blue, respectively.

4.5.3. Nabuco Dataset
For the Nabuco dataset, we adopt a two-fold cross-

validation strategy, where the final evaluation results are
obtained by averaging the outcomes of both validations, as
presented in Table 6.

MFE-GAN (U-Net++ & E�cientNetV2-S) achieves the
highest FM and p-FM values of 88.04 and 88.72, respec-
tively, as well as the lowest DRD value of 5.06. The highest
PSNR of 18.65 dB is achieved by the model with U-Net++
& E�cientNet-B5 of Ju et al. [20], but MFE-GAN with U-
Net++ & E�cientNetV2-S ranks second, achieving 18.60
dB. Notably, MFE-GAN also obtains the best ASM of 72.58,
surpassing the second-best ASM of 72.34 achieved by the
model of Ju et al. [20] with U-Net++ & E�cientNet-B5.

Furthermore, our two models rank first and second in
terms of the shortest training time for Stage 2 and Stage 3
Top, respectively. The total training and inference times for
MFE-GAN with U-Net & E�cientNetV2-S are the shortest,
at 23.97h and 0.18h, respectively. Meanwhile, MFE-GAN

with U-Net++ & E�cientNetV2-S achieves the second
shortest total training time of 25.93h. In conclusion, the
comparison outcomes on the Nabuco dataset are consistent
with the results observed on the Benchmark dataset.

4.5.4. CMATERdb Dataset
To demonstrate the e�ectiveness of MFE-GAN in sce-

narios with limited data, we evaluate it on the CMATERdb
dataset, which consists of only five representative images.
We adopt a five-fold cross-validation strategy, indicating that
the results in Table 7 are averaged over the five validation
runs. Notably, due to the limited training and test data, we
report the training and inference times in seconds (s).

In terms of the FM, p-FM, PSNR, DRD, and ASM evalu-
ation metrics, MFE-GAN with U-Net++ & E�cientNetV2-
S achieves the best performance across all metrics, while Ju
et al.’s [20] model with U-Net++ & E�cientNet-B5 ranks
second. Furthermore, our top-performing model (U-Net++
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Method Generator FM~ p-FM~ PSNR~

Blank Image – – – 10.90dB
Suh et al. [18] U-Net & EfficientNet-B4 26.09 19.90 11.39dB
Ju et al. [20] U-Net & EfficientNet-B4 60.39 56.35 12.19dB
MFE-GAN (Ours) U-Net & EfficientNetV2-S 69.44 69.88 11.75dB

Figure 4: Representative visualized results from the test set (case 1): the first row from left to right shows input image, ground-truth
image, and blank image; the second row from left to right shows Suh et al. [18], Ju et al. [20], and MFE-GAN.

& E�cientNetV2-S) also achieves the second-shortest train-
ing and inference times.

In contrast, Ju et al.’s [20]’s model, despite ranking
second in performance, is significantly slower due to its
longer Stage 2 training time. Moreover, MFE-GAN with U-
Net & E�cientNetV2-S still achieves the shortest training
and inference times of 8,894s and 3.06s, respectively, while
achieving an ASM value of 73.10.

4.6. Visual Results
We randomly select three images from the test set of

Benchmark Dataset for visual examination and to demon-
strate that the PSNR metric does not directly reflect model
performance.

As shown in Figure 4, MFE-GAN generates more com-
plete foreground information. However, due to the high con-
tamination of the document image, some noise is inevitable
when generating additional foreground content. In contrast,
Suh et al.’s method [18] and Ju et al.’s method [20] generate
less foreground content. It should be noted that because the
background is white, PSNR favors methods that generate
less content, which leads to higher PSNR values. To put
things into context, a blank image (i.e., all pixels set to white)
yields a PSNR of 10.90dB. This value is deceptively high
and not far from MFE-GAN’s score of 11.75dB. However, it

is obvious that the binarized image generated by MFE-GAN
is closer to the ground-truth image than the blank image.

Figure 5 further confirms this conclusion. Here, a blank
image yields a PSNR of 14.19dB, which is higher than
that of MFE-GAN (14.08dB). However, it is obvious that
our generated binarized image is closer to the ground-truth
image than the blank one.

Figure 6 presents another case of a lower PSNR value,
where MFE-GAN does not process background noise as
e�ectively as the other two methods. However, MFE-GAN
more faithfully generates the original text information com-
pared to others. Furthermore, the PSNR metric is also unre-
liable in this case because the provided ground-truth itself is
flawed, failing to capture the damaged edges of the page.

These observations support our claim that a higher
PSNR value is not indicative of better model performance,
and MFE-GAN can successfully generate more textual
information.

4.7. Ablation Study
To evaluate the contribution of each enhancement in

MFE-GAN, we gradually replace or remove each component
and observe the impact on performance. Table 8 summarizes
the results under various configurations. To ensure a fair
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Method Generator FM~ p-FM~ PSNR~

Blank Image – – – 14.19dB
Suh et al. [18] U-Net & EfficientNet-B4 0.60 0.60 14.00dB
Ju et al. [20] U-Net & EfficientNet-B4 10.05 9.32 14.23dB
MFE-GAN (Ours) U-Net & EfficientNetV2-S 56.99 56.51 14.08dB

Figure 5: Representative visualized results from the test set (case 2): the first row from left to right shows input image, ground-truth
image, and blank image; the second row from left to right shows Suh et al. [18], Ju et al. [20], and MFE-GAN.

Method Generator FM~ p-FM~ PSNR~

Suh et al. [18] U-Net & EfficientNet-B4 38.46 38.68 6.75dB
Ju et al. [20] U-Net & EfficientNet-B4 31.58 31.66 7.90dB
MFE-GAN (Ours) U-Net & EfficientNetV2-S 45.49 45.58 6.14dB

Figure 6: Representative visualized results from the test set (case 3): from left to right shows input image, ground-truth image,
Suh et al. [18], Ju et al. [20], and MFE-GAN.
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Table 8
Ablation study of each component for the proposed MFE-GAN on the Benchmark Dataset.

Component Performance

Backbone:
EfficientNetV2-S

Generator:
U-Net++

Discriminator:
InstanceNorm

Generator Loss Function:
D(G(z))+�1LBCE+�2LSoft-DICE

MFE Module:
HWT&Norm ASM Total

Training
Total

Inference

Ç Ç Ç Ç 73.79 112.74h 1.21h
Ç Ç Ç Ç 73.23 63.91h 0.68h
Ç Ç Ç Ç 73.45 61.24h 0.89h
Ç Ç Ç Ç 73.58 70.52h 0.91h
Ç Ç Ç Ç 73.81 523.86h 1.19h
Ç Ç Ç Ç Ç 73.79 68.43h 0.77h

Input Ground-Truth Suh et al. Ju et al. Ours

Figure 7: Results for a sample affected by overexposure, leading to lower contrast. The images from left to right show the
input image, ground-truth image, Suh et al. [18] (U-Net & EfficientNet-B5), Ju et al. [20] (U-Net++ & EfficientNet-B5), and
MFE-GAN (U-Net & EfficientNetV2-S).

comparison, all experiments were conducted using the same
dataset and hyperparameter settings.

Specifically, replacing U-Net [25] with U-Net++ [35]
in the generator and adding instance normalization to the
discriminator improve model performance, with a slight in-
crease in training time. Replacing E�cientNet-B5 [33] with
E�cientNetV2-S [36] in the generator reduces both training
and inference times, while the new loss function further
improves performance. Finally, employing the MFE mod-
ule (i.e., HWT and normalization) for multi-scale feature
extraction significantly reduces training time from 523.86h
to 68.43h, representing an 87% decrease, with only a 0.02
decrease in ASM.

Overall, each improvement objectively contributes to
either performance gains or reductions in training and in-
ference times.

5. Discussion
We select a low-contrast sample with overexposure from

the Benchmark dataset to showcase the visual results of
di�erent methods, and to discuss the limitations of MFE-
GAN. As shown in Figure 7, the input image is a yellowish

manuscript, with the light source on the left side being
excessively bright during capture. This results in a very low
contrast between the text and background, making e�ective
image binarization challenging.

Compared to Suh et al.’s [18] and Ju et al.’s [20] meth-
ods, MFE-GAN generates more detailed text. However, our
final results remain unsatisfactory, with text still missing
in the central region. We consider that, when the contrast
between the text and background is too low, GANs trained
independently on di�erent color channels struggle to e�ec-
tively distinguish the text from the background, which in turn
a�ects the generation results.

Therefore, for documents a�ected by light pollution,
we suggest that applying contrast enhancement techniques
based on both global and local features could help GANs
distinguish the text from the background more e�ectively.
In addition, incorporating pre-processing methods based on
exposure compensation may mitigate the impact of this is-
sue. Moreover, we suspect that MFE-GAN may have limited
generalization performance under extreme conditions, such
as overexposure and low-contrast scenes, as the Benchmark
Dataset contains few light-polluted samples. To address
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this, we suggest employing a data augmentation strategy to
increase the proportion of such samples under extreme con-
ditions in the training set and thereby enhance the model’s
generalization ability.

6. Conclusion and Future Work
Degraded color document image enhancement and bina-

rization are important steps in document analysis. Current
SOTA GAN-based methods can generate satisfactory docu-
ment binarization results but su�er from long training and
inference times.

To address this drawback, we propose MFE-GAN, an ef-
ficient three-stage GAN-based framework that incorporates
an MFE module (i.e., HWT and normalization) for multi-
scale feature extraction, which significantly reduces training
and inference times. Furthermore, we introduce novel gen-
erators, discriminators, and a new loss function to further
improve the performance of our proposed MFE-GAN. Ex-
perimental results on benchmark datasets demonstrate that
MFE-GAN not only achieves superior model performance
but also significantly reduces the total training and inference
times in comparison to SOTA GAN-based methods.

For future work, we plan to combine document image bi-
narization and document image understanding for practical
applications, especially for ancient documents or historical
artifacts. Such applications could include real-time transla-
tion, summarization, and related document retrieval.
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Table 9
Training and inference times of the original models before (Baseline) and after applying the Multi-scale Feature Extraction (MFE)
module (Ours).

Method Stage 2
Train

Stage 2
Predict

Stage 3
Top

Stage 3
Bottom

Total
Training

Total
Inference

U-Net & EfficientNetV2-S (Baseline) 332.28h 3.56h 47.47h 1.63h 384.95h 1.12h
U-Net & EfficientNetV2-S (MFE-GAN) 11.60h 3.45h 47.47h 1.39h 63.91h 0.68h

U-Net++ & EfficientNetV2-S (Baseline) 465.28h 3.94h 52.88h 1.76h 523.86h 1.19h
U-Net++ & EfficientNetV2-S (MFE-GAN) 14.12h 3.63h 49.29h 1.39h 68.43h 0.77h
The best value in each group is highlighted in bold.

Table 10
Quantitative comparison of MFE-GAN using different architectures and backbone models to construct the generator.

Generator FM~ p-FM~ PSNR~ DRDö ASM~ Total Trainingö Total Inferenceö

U-Net & EfficientNetV2-S 88.83 89.87 19.07dB 4.86 73.23 63.91h 0.68h
U-Net & EfficientNet-B4 87.87 88.57 18.82dB 5.17 72.52 69.38h 0.75h
U-Net & EfficientNet-B5 88.88 89.65 18.93dB 4.85 73.15 81.63h 0.83h

U-Net++ & EfficientNetV2-S 89.69 90.78 19.15dB 4.45 73.79 68.43h 0.77h
U-Net++ & EfficientNet-B4 89.40 90.38 19.01dB 4.87 73.48 85.45h 0.91h
U-Net++ & EfficientNet-B5 89.76 90.75 19.15dB 4.51 73.79 112.74h 1.21h
The proposed MFE-GAN employs U-Net & EfficientNetV2-S and U-Net++ & EfficientNetV2-S as generators. The best value in each
group is highlighted in bold.

A. E�ect on the MFE Module
To demonstrate the e�ectiveness of the MFE module

(i.e., applying HWT and normalization) in Stage 1, we eval-
uate two configurations of MFE-GAN: Model A: U-Net [25]
with E�cientNetV2-S [36], and Model B: U-Net++ [35]
with E�cientNetV2-S [36].

Table 9 summarizes the time taken for each stage, as well
as the total training and inference times of the compared
methods. Two configurations are compared: one with the
application of the MFE module in Stage 1 (processing 128
ù 128 sub-bands), and one without (i.e., the baseline, where
the original 256 ù 256 patches are directly fed into the
GANs).

Here, the total training time refers to the sum of the
durations of all stages, while the total inference time denotes
the time required to generate images for all test sets. It can be
seen that for both models, the total training time decreases
when the MFE module is applied.

Specifically, the training time decreases from 384.95h to
63.91h for Model A and from 523.86h to 68.43h for Model B
when the MFE module is applied. Similarly, the total infer-
ence time decreases from 1.12h to 0.68h for Model A and
from 1.19h to 0.77h for Model B. These results demonstrate
that incorporating the MFE module significantly reduces
both training and inference times.

B. E�ect on the Generator Architecture
One significant contribution of this work is the de-

sign of novel generators for the proposed three-stage GAN
framework. This work aims to enable the trained model

to generate more foreground text information using these
novel generators. To demonstrate that our proposed genera-
tor backbone (E�cientNetV2 [36]) is superior to the original
backbone (E�cientNet [33]) when used with U-Net [25] or
U-Net++ [35], we conduct a series of experiments.

As shown in Table 10, we compare the model perfor-
mance as well as the total training and inference times
across di�erent generator architectures. For the encoder of
the generators, we utilize E�cientNet-B4, E�cientNet-B5,
and E�cientNetV2-S. As shown in Table 10, for di�erent
GAN encoders, the proposed MFE-GAN achieves shorter
total training and inference times than the original ones,
while maintaining comparable or higher ASM values.

Specifically, the original method using U-Net++ [35]
with E�cientNet-B5 [33] achieves an ASM value of 73.79,
with training and inference times of 112.74h and 1.21h,
respectively. In contrast, MFE-GAN obtains the same ASM
value but with a total training time of 68.43h and a total infer-
ence time of 0.77h, which represents a decrease of 39% and
36%, respectively. These experimental results demonstrate
that the proposed MFE-GAN can greatly reduce the training
and inference times while maintaining, or even improving,
model performance.

C. E�ect on the Loss Functions
To validate that combining both BCE loss and Soft Dice

loss in the generator’s loss function can improve model
performance, we conduct a comparative experiment. Specif-
ically, we adopt the loss function D(G(z)) + 0.5 ù LBCE, as
used in [18, 20], as our baseline (see Table 2). In addition, we
introduce two additional configurations: (1) replacing BCE
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Table 11
Quantitative comparison of our method with different loss functions.

Generator Loss Function FM~ p-FM~ PSNR~ DRDö ASM~ Total Trainö Total Inferenceö

D(G(z)) + �LBCE 89.41 90.42 19.10dB 4.61 73.58 70.52h 0.91h
D(G(z)) + �LSoft-DICE 88.81 90.00 19.09dB 4.31 73.40 71.55h 0.75h

D(G(z)) + �1LBCE + �2LSoft-DICE 89.69 90.78 19.15dB 4.45 73.79 68.43h 0.77h
We set � = 50 and �1 = �2 = 25. The best value in each group is highlighted in bold.

Table 12
Quantitative comparison (ASM: FM/p-FM/PSNR/DRD) of the proposed MFE-GAN and other methods on each DIBCO dataset.

(a) DIBCO 2011

Method FM~ p-FM~ PSNR~ DRDö

Otsu [8] 82.10 85.96 15.72dB 8.95
Sauvola [10] 82.14 87.70 15.65dB 8.50
U-Net & B4 [18] 89.38 90.44 19.71dB 3.25
U-Net & B5 [18] 89.64 91.24 19.76dB 3.02
U-Net++ & B4 [20] 89.02 89.96 19.67dB 3.02
U-Net++ & B5 [20] 91.89 93.58 19.73dB 2.95
U-Net & V2-S 92.47 93.14 19.77dB 2.81
U-Net++ & V2-S 92.83 93.50 19.92dB 2.58

(b) DIBCO 2013

Method FM~ p-FM~ PSNR~ DRDö

Otsu [8] 80.04 83.43 16.63dB 10.98
Sauvola [10] 82.71 87.74 17.02dB 7.64
U-Net & B4 [18] 93.23 93.30 20.81dB 2.88
U-Net & B5 [18] 94.23 94.68 21.48dB 2.46
U-Net++ & B4 [20] 93.81 94.19 21.06dB 2.68
U-Net++ & B5 [20] 94.34 94.72 21.28dB 2.17
U-Net & V2-S 92.80 93.18 20.98dB 3.19
U-Net++ & V2-S 93.23 93.57 21.09dB 2.77

(c) H-DIBCO 2014

Method FM~ p-FM~ PSNR~ DRDö

Otsu [8] 91.62 95.69 18.72dB 2.65
Sauvola [10] 84.70 87.88 17.81dB 4.77
U-Net & B4 [18] 96.19 96.71 21.58dB 1.15
U-Net & B5 [18] 96.37 96.90 21.78dB 1.09
U-Net++ & B4 [20] 95.96 96.33 21.31dB 1.22
U-Net++ & B5 [20] 96.38 96.96 21.85dB 1.08
U-Net & V2-S 96.28 96.77 21.78dB 1.13
U-Net++ & V2-S 96.36 97.72 21.91dB 1.08

(d) H-DIBCO 2016

Method FM~ p-FM~ PSNR~ DRDö

Otsu [8] 86.59 89.92 17.79dB 5.58
Sauvola [10] 84.64 88.39 17.09dB 6.27
U-Net & B4 [18] 91.91 95.00 19.67dB 2.99
U-Net & B5 [18] 91.97 95.23 19.69dB 2.94
U-Net++ & B4 [20] 92.31 94.86 19.83dB 2.80
U-Net++ & B5 [20] 92.42 95.03 19.87dB 2.79
U-Net & V2-S 91.82 94.17 19.53dB 2.97
U-Net++ & V2-S 92.05 94.26 19.62dB 2.85

(e) DIBCO 2017

Method FM~ p-FM~ PSNR~ DRDö

Otsu [8] 77.73 77.89 13.85dB 15.54
Sauvola [10] 77.11 84.10 14.25dB 8.85
U-Net & B4 [18] 89.65 90.42 17.76dB 3.82
U-Net & B5 [18] 89.89 90.97 17.95dB 3.61
U-Net++ & B4 [20] 87.58 88.39 17.58dB 4.67
U-Net++ & B5 [20] 88.72 89.81 17.97dB 3.77
U-Net & V2-S 88.43 89.36 17.60dB 4.04
U-Net++ & V2-S 89.34 90.14 17.64dB 3.80

(f) H-DIBCO 2018

Method FM~ p-FM~ PSNR~ DRDö

Otsu [8] 51.45 53.05 9.74dB 59.07
Sauvola [10] 67.81 74.08 13.78dB 17.69
U-Net & B4 [18] 93.53 95.17 20.59dB 2.23
U-Net & B5 [18] 93.69 95.58 20.74dB 2.16
U-Net++ & B4 [20] 93.58 94.73 20.50dB 2.20
U-Net++ & B5 [20] 93.75 95.54 20.71dB 2.11
U-Net & V2-S 92.85 94.65 20.14dB 2.71
U-Net++ & V2-S 93.61 95.28 20.07dB 2.60

(g) DIBCO 2019

Method FM~ p-FM~ PSNR~ DRDö

Otsu [8] 47.83 45.59 9.08dB 109.46
Sauvola [10] 51.73 55.15 13.72dB 13.83
U-Net & B4 [18] 61.76 62.00 13.58dB 17.46
U-Net & B5 [18] 64.11 64.74 13.77dB 15.97
U-Net++ & B4 [20] 64.75 69.49 13.65dB 15.87
U-Net++ & B5 [20] 66.42 66.80 13.70dB 16.53
U-Net & V2-S 67.17 67.83 13.70dB 17.17
U-Net++ & V2-S 70.41 70.96 13.79dB 15.49

(h) Mean Values

Method FM~ p-FM~ PSNR~ DRDö

Otsu [8] 73.91 75.93 14.50dB 30.32
Sauvola [10] 75.83 80.72 15.62dB 9.65
U-Net & B4 [18] 87.95 89.01 19.10dB 4.83
U-Net & B5 [18] 88.56 89.90 19.31dB 4.46
U-Net++ & B4 [20] 88.14 89.71 19.09dB 4.64
U-Net++ & B5 [20] 89.13 90.35 19.30dB 4.49
U-Net & V2-S 88.83 89.87 19.07dB 4.86
U-Net++ & V2-S 89.69 90.78 19.15dB 4.45

The proposed MFE-GAN is highlighted in bold. The best and second-best performances are highlighted in red and blue, respectively.
Since papers [18, 20] did not provide experimental results on all datasets for the configuration shown in the table, we have independently
trained these models ourselves.
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Figure 8: Qualitative comparison of binarization methods on a sample from the DIBCO 2013 dataset: (a) Input, (b) Ground-Truth,
(c) Otsu [8], (d) Niblack [9], (e) Sauvola [10], (f) Vo [16], (g) He [17], (h) Zhao [28], (i) Suh [56], (j) Ju [20], (k) MFE-GAN.

Figure 9: Qualitative comparison of binarization methods on a sample from the DIBCO 2019 dataset: (a) Input Image, (b)
Ground-Truth, (c) Suh [18], (d) Ju [20], (e) MFE-GAN.

loss with Soft Dice loss: D(G(z)) + 0.5ùLSoft-DICE; and (2)
combining BCE loss and Soft Dice loss: D(G(z)) + 0.25 ù
LBCE +0.25 ù LSoft-DICE.

As presented in Table 11, the experimental results show
that directly replacing BCE loss with Soft Dice loss leads to a
decline in model performance. This demonstrates that BCE
loss contributes positively to model performance in binary
classification (text vs. background). In contrast, MFE-GAN,
which combines both BCE loss and Soft Dice loss, achieves
the best performance across FM, p-FM, and PSNR evalua-
tion metrics. In addition, it outperforms the baseline model,
achieving the shortest total training time and a reduced total
inference time.

D. Results on Each DIBCO Dataset
Since the test set of the Benchmark dataset consists

of several DIBCO datasets, the results for each DIBCO
dataset are shown in Table 12. MFE-GAN (using U-Net++

& E�cientNetV2-S) achieves the best or second-best re-
sults on several datasets, including DIBCO 2011, H-DIBCO
2014, and DIBCO 2019, demonstrating its robustness to
various types of document degradation. Overall, MFE-GAN
achieves the highest mean FM and p-FM values (89.69% and
90.78%), along with a competitive DRD value of 4.45, out-
performing the previous model (U-Net++ & E�cientNet-
B5) proposed in [20].

E. Qualitative Comparison
Beyond the quantitative comparisons on di�erent datasets,

Figures 8 and 9 provide qualitative comparisons on the
DIBCO 2013 and 2019 datasets between di�erent methods.
These figures demonstrate that SOTA GAN-based methods
outperform traditional binarization methods in shadow and
noise elimination. Furthermore, MFE-GAN excels in pre-
serving textual content while e�ectively mitigating shadows
and noise.
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